Part Number Hot Search : 
2A100 1SV28 EM83702 MZS1206 4C7V5 6KE7V5 GL256N TM3071
Product Description
Full Text Search
 

To Download MAX2065 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-3131; Rev 0; 3/08
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
General Description
The MAX2065 high-linearity, analog/digital variablegain amplifier (VGA) is designed to operate in the 50MHz to 1000MHz frequency range with two independent attenuators (see the Typical Application Circuit). The digital attenuator is controlled as a slave peripheral using either the SPITM-compatible interface or a parallel bus with 31dB total adjustment range in 1dB steps. An added feature allows "rapid-fire" gain selection between each of four steps, preprogrammed by the user through the SPI-compatible interface. The 2-pin control allows the user to quickly access any one of four customized attenuation states without reprogramming the SPI bus. The analog attenuator is controlled using an external voltage or through the SPI-compatible interface using an on-chip 8-bit DAC. Because each of the three stages has its own RF input and RF output, this component can be configured to either optimize NF (amplifier configured first), OIP3 (amplifier last), or a compromise of NF and OIP3. The device's performance features include 22dB amplifier gain (amplifier only), 6.5dB NF at maximum gain (includes attenuator insertion losses), and a high OIP3 level of +42dBm. Each of these features makes the MAX2065 an ideal VGA for numerous receiver and transmitter applications. In addition, the MAX2065 operates from a single +5V supply with full performance, or a single +3.3V supply with slightly reduced performance, and has an adjustable bias to trade current consumption for linearity performance. This device is available in a compact 40pin thin QFN package (6mm x 6mm) with an exposed pad. Electrical performance is guaranteed over the extended temperature range (TC = -40C to +85C). Pin-Compatible Family Includes: MAX2066 (Digital VGA) MAX2067 (Analog VGA) +19.4dB (Typ) Maximum Gain 0.5dB Gain Flatness Over 100MHz Bandwidth 62dB Gain Range (31dB Analog + 31dB Digital) Built-in DAC for Analog Attenuation Control Supports Four "Rapid-Fire" Preprogrammed Attenuator States Quickly Access Any One of Four Customized Attenuation States Without Reprogramming the SPI Bus Ideal for Fast-Attack, High-Level Blocker Protection Prevents ADC Overdrive Condition Excellent Linearity (Configured with Amplifier Last) +42dBm OIP3 +63dBm OIP2 +19dBm Output 1dB Compression Point -67dBc HD2 -83dBc HD3 6.5dB Typical Noise Figure (NF) Fast, 25ns Digital Switching Very Low Digital VGA Amplitude Overshoot/ Undershoot Single +5V Supply (Optional +3.3V Operation) External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ Reduced-Performance Mode
Features
50MHz to 1000MHz RF Frequency Range
MAX2065
Applications
IF and RF Gain Stages Temperature Compensation Circuits Cellular Band WCDMA and cdma2000(R) Base Stations GSM 850/GSM 900 EDGE Base Stations WiMAX and LTE Base Stations and Customer Premise Equipment Fixed Broadband Wireless Access Wireless Local Loop Military Systems Video-on-Demand (VOD) and DOCSIS(R)Compliant EDGE QAM Modulation Cable Modem Termination Systems (CMTS)
Ordering Information
PART MAX2065ETL+ TEMP RANGE PINPACKAGE PKG CODE T4066-3 T4066-3
-40C to +85C 40 Thin QFN-EP*
MAX2065ETL+T -40C to +85C 40 Thin QFN-EP*
+Denotes a lead-free package. *EP = Exposed pad. T = Tape and reel.
Pin Configuration appears at end of data sheet. cdma2000 is a registered trademark of Telecommunications Industry Association. DOCSIS and CableLabs are registered trademarks of Cable Television Laboratories, Inc. (CableLabs(R)).
1
SPI is a trademark of Motorola, Inc.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
ABSOLUTE MAXIMUM RATINGS
VCC_ to GND ........................................................-0.3V to +5.5V VDD_LOGIC, DATA, CS, CLK, SER/PAR, VDAC_EN, VREF_SELECT.....................................-0.3V to (VCC_ + 0.3V) STATE_A, STATE_B, D0-D4 ....................-0.3V to (VCC_ + 0.3V) AMP_IN, AMP_OUT, VREF_IN, ANALOG_VCTRL ................................-0.3V to (VCC_ + 0.3V) ATTEN1_IN, ATTEN1_OUT, ATTEN2_IN, ATTEN2_OUT...................................................-1.2V to + 1.2V RSET to GND........................................................-0.3V to + 1.2V RF Input Power (ATTEN1_IN, ATTEN1_OUT, ATTEN2_IN, ATTEN2_OUT).......................................+20dBm RF Input Power (AMP_IN)...............................................+18dBm Continuous Power Dissipation (Note 1) ...............................6.5W JA (Notes 2, 3)..............................................................+38C/W JC (Note 3) ...................................................................+10C/W Operating Temperature Range (Note 4) .....TC = -40C to +85C Maximum Junction Temperature .....................................+150C Storage Temperature.........................................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C
Note 1: Based on junction temperature TJ = TC + (JC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a printed-circuit board (PCB). See the Applications Information section for details. The junction temperature must not exceed +150C. Note 2: Junction temperature TJ = TA + (JA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150C. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, high-current (HC) mode, VCC = +3.0V to +3.6V, TC = -40C to +85C. Typical values are at VCC = +3.3V and TC = +25C, unless otherwise noted.)
PARAMETER Supply Voltage Supply Current Input High Voltage Input Low Voltage SYMBOL VCC ICC VIH VIL CONDITIONS MIN 3.0 TYP 3.3 60 2 0.8 MAX 3.6 80 UNITS V mA V V
LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT, SER/PAR, STATE_A, STATE_B, D0-D4)
+5V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, V CC = +4.75V to +5.25V, T C = -40C to +85C. Typical values are at V CC = +5V and TC = +25C, unless otherwise noted.)
PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC Low-current (LC) mode High-current (HC) mode 3 0.8 -1 -1 +1 +1 CONDITIONS MIN 4.75 TYP 5 73 124 MAX 5.25 93 146 UNITS V mA
LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT, SER/PAR, STATE_A, STATE_B, D0-D4) Input High Voltage Input Low Voltage Input Current Logic-High Input Current Logic-Low VIH VIL IIH IIL V V A A
2
_______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +3.0V to +3.6V, TC = -40C to +85C. Typical values are at VCC = +3.3V, HC mode with attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise noted.) (Note 5)
PARAMETER RF Frequency Range Small Signal Gain Output Third-Order Intercept Point Noise Figure Total Attenuation Range SYMBOL fRF G OIP3 NF POUT = 0dBm/tone, maximum gain setting Maximum gain setting Analog and digital combined (Notes 6, 7) CONDITIONS MIN 50 18.8 37.5 6.7 61.5 TYP MAX 1000 UNITS MHz dB dBm dB dB
MAX2065
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +4.75 to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz fRF 1000MHz, TC = -40C to +85C. Typical values are at VCC = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise noted.) (Note 5)
PARAMETER RF Frequency Range SYMBOL fRF (Notes 6, 7) 200MHz 350MHz, TC = +25C Small Signal Gain G 450MHz 750MHz 900MHz Gain Variation vs. Temperature Gain Flatness vs. Frequency Any 100MHz frequency band from 50MHz to 500MHz 200MHz 350MHz, TC = +25C (Note 7) Noise Figure NF 450MHz 750MHz 900MHz Total Attenuation Range Output Second-Order Intercept Point OIP2 Analog and digital combined POUT = 0dBm/tone, f = 1MHz, f1 + f2 200MHz 350MHz POUT = 0dBm/tone, HC mode, f = 1MHz Output Third-Order Intercept Point OIP3 450MHz 750MHz 900MHz 200MHz 350MHz POUT = 0dBm/tone, 450MHz LC mode, f = 1MHz 750MHz 900MHz 17.5 CONDITIONS MIN 50 19.4 18.7 18.2 16.4 15.6 -0.006 0.5 6.5 6.8 7 7.8 8.2 61.5 63 42 40 39 36 35 40 38 37 35 33 dBm dB dBm 8 dB dB/C dB 19.7 dB TYP MAX 1000 UNITS MHz
_______________________________________________________________________________________
3
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit, VCC = +4.75 to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz fRF 1000MHz, TC = -40C to +85C. Typical values are at VCC = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise noted.) (Note 5)
PARAMETER Output -1dB Compression Point Second Harmonic Third Harmonic Input Return Loss Output Return Loss DIGITAL ATTENUATOR Insertion Loss Input Second-Order Intercept Point Input Third-Order Intercept Point Attenuation Range Step Size Relative Step Accuracy Absolute Step Accuracy 0dB to 16dB Insertion Phase Step fRF = 170MHz Between any two states RF settled to within 0.1dB 50 source 50 load 24dB 31dB Amplitude Overshoot/Undershoot Switching Speed Input Return Loss Output Return Loss ANALOG ATTENUATOR Insertion Loss Input Second-Order Intercept Point Input Third-Order Intercept Point Attenuation Range Gain Control Slope Maximum Gain Control Slope Insertion Phase Change Group Delay Group Delay vs. Control Voltage Analog Control Input Range IIP2 IIP3 PRF1 = 0dBm, PRF2 = 0dBm, maximum gain setting, f = 1MHz, f1 + f2 PRF1 = 0dBm, PRF2 = 0dBm, maximum gain setting, f = 1MHz Analog control input Analog control input Over analog control input range Over analog control input range Maximum gain setting Over analog control input range 0.25 1.2 70 36 31.1 -12.5 -35 18 0.98 -0.25 2.75 dB dBm dBm dB dB/V dB/V Degrees ns ns V ET = 15ns ET = 40ns 31dB to 0dB 0dB to 31dB IIP2 IIP3 PRF1 = 0dBm, PRF2 = 0dBm, f = 1MHz, f1 + f2 PRF1 = 0dBm, PRF2 = 0dBm, f = 1MHz 2.5 52 41 31.2 1 0.2 0.45 4.8 8 10.8 1.0 0.05 25 21 19 19 dB ns dB dB Degrees dB dBm dBm dB dB dB dB SYMBOL P1dB CONDITIONS 350MHz, TC = +25C (Note 8) POUT = +3dBm, fRF = 200MHz, TC = +25C (Note 7) POUT = +3dBm, fRF = 200MHz, TC = +25C (Note 7) 50 source, maximum gain setting 50 load, maximum gain setting MIN 17 -60 -71 TYP 18.7 -67 -83 18 18 MAX UNITS dBm dBc dBc dB dB
4
_______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit, VCC = +4.75 to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz fRF 1000MHz, TC = -40C to +85C. Typical values are at VCC = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise noted.) (Note 5)
PARAMETER Analog Control Input Impedance Input Return Loss Output Return Loss D/A CONVERTER Number of Bits Output Voltage SERIAL PERIPHERAL INTERFACE (SPI) Maximum Clock Speed Data-to-Clock Setup Time Data-to-Clock Hold Time Clock-to-CS Setup Time CS Positive Pulse Width CS Setup Time Clock Pulse Width fCLK tCS tCH tES tEW tEWS tCW 20 2 2.5 3 7 3.5 5 MHz ns ns ns ns ns ns DAC code = 00000000 DAC code = 11111111 2.75 8 0.25 Bits V 50 source 50 load SYMBOL CONDITIONS MIN TYP 80 22 22 MAX UNITS k dB dB
MAX2065
Note 5: All limits include external component losses. Output measurements are performed at RF output port of the Typical Application Circuit. Note 6: Operating outside this range is possible, but with degraded performance of some parameters. Note 7: Guaranteed by design and characterization. Note 8: It is advisable not to operate continuously the VGA RF input above +15dBm.
_______________________________________________________________________________________
5
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
Typical Operating Characteristics
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.)
SUPPLY CURRENT vs. VCC
MAX2065 toc01
GAIN vs. RF FREQUENCY
MAX2065 toc02
GAIN vs. RF FREQUENCY
21 20 GAIN (dB) 19 18 17 VCC = 5.00V VCC = 4.75V VCC = 5.25V
MAX2065 toc03
150 TC = -40C 140 SUPPLY CURRENT (mA) TC = +25C
22 21 20 GAIN (dB) 19 18 17 TC = -40C
22
130
TC = +25C
120
110
TC = +85C
16 15
TC = +85C
16 15 14
100 4.750
14 4.875 5.000 VCC (V) 5.125 5.250 50 250 450 650 850 1050 RF FREQUENCY (MHz)
50
250
450
650
850
1050
RF FREQUENCY (MHz)
GAIN OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc04
DIGITAL ATTENUATOR RELATIVE ERROR vs. RF FREQUENCY
0.75 RELATIVE ERROR (dB) 0.50 0.25 0 -0.25 -0.50 -0.75
MAX2065 toc05
DIGITAL ATTENUATOR ABSOLUTE ERROR vs. RF FREQUENCY
MAX2065 toc06
22
1.00
1.00 0.75 0.50 ABSOLUTE ERROR (dB) 0.25 0 -0.25 -0.50 -0.75 -1.00 -1.25 -1.50 -1.70 -2.00
12 GAIN (dB)
2
-8
-18 50 250 450 650 850 1050 RF FREQUENCY (MHz)
-1.00 50 250 450 650 850 1050 RF FREQUENCY (MHz)
50
250
450
650
850
1050
RF FREQUENCY (MHz)
INPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc07
OUTPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc08
REVERSE ISOLATION OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc09
0 -5 16dB INPUT MATCH (dB) -10 -15 -20 -25 4dB -30 0 200 400 600 800 31dB 0dB, 8dB 1dB, 2dB
0 -5 OUTPUT MATCH (dB) -10 -15 -20 16dB, 31dB -25 -30
-30
0dB, 1dB, 2dB, 4dB 8dB
REVERSE ISOLATION (dB)
-40 DIGITAL ATTENUATOR 0dB -50 DIGITAL ATTENUATOR 31dB
-60
-70 0 200 400 600 800 1000 50 250 450 650 850 1050 RF FREQUENCY (MHz) RF FREQUENCY (MHz)
1000
RF FREQUENCY (MHz)
6
_______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
Typical Operating Characteristics (continued)
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.)
S21 PHASE CHANGE OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc10
MAX2065
GAIN OVER ANALOG ATTENUATOR SETTING vs. RF FREQUENCY
DAC CODE 0 17 12 GAIN (dB) DAC CODE 64 GAIN (dB) 7 2 -3 DAC CODE 128 DAC CODE 256 -8 -13 -18 50 250 450 650 850 1050 DAC CODE 32
MAX2065 toc11
GAIN vs. ANALOG ATTENUATOR SETTING
17 12 7 2 -3 1000MHz 450MHz 50MHz 200MHz
MAX2065 toc12
60 50 S21 PHASE CHANGE (DEG) 40 30 20 10 0 -10
22
22
-8 REFERENCED TO HIGH GAIN STATE POSITIVE PHASE = ELECTRICALLY SHORTER 50 250 450 650 850 1050 RF FREQUENCY (MHz) -13 -18 RF FREQUENCY (MHz)
0
32
64
96
128 160 192
224 256
DAC CODE
GAIN vs. ANALOG ATTENUATOR SETTING
MAX2065 toc13
GAIN vs. ANALOG ATTENUATOR SETTING
MAX2065 toc14
INPUT MATCH vs. ANALOG ATTENUATOR SETTING
MAX2065 toc15
22 RF = 200MHz 17 12 GAIN (dB) TC = -40C, +25C, +85C
22 RF = 200MHz 17 12 GAIN (dB) 7 2 -3 -8 -13 -18 VCC = 4.75V, 5.00V, 5.25V
0 -5 INPUT MATCH (dB) -10 1000MHz -15 -20 -25 -30 50MHz 200MHz 450MHz
7 2 -3 -8 -13 -18 0 32 64 96 128 160 192 224 256 DAC CODE
0
32
64
96
128 160 192
224 256
0
32
64
96
128 160 192
224 256
DAC CODE
DAC CODE
OUTPUT MATCH vs. ANALOG ATTENUATOR SETTING
MAX2065 toc16
REVERSE ISOLATION OVER ANALOG ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc17
S21 PHASE CHANGE vs. ANALOG ATTENUATOR SETTING
70 S21 PHASE CHANGE (DEG) 60 50 40 30 20 10 0 50MHz 0 32 64 96 128 160 192 224 258 DAC CODE 200MHz 1000MHz 450MHz REFERENCED TO HIGH GAIN STATE POSITIVE PHASE = ELECTRICALLY SHORTER
MAX2065 toc18
0 -5 OUTPUT MATCH (dB) -10 -15 -20 -25 -30 0 32 64 96 128 160 192 50MHz 200MHz 450MHz
-30
80
REVERSE ISOLATION (dB)
1000MHz
-40
DAC CODE 0
-50 DAC CODE 255 -60
-70 224 256 50 250 450 650 850 1050 DAC CODE RF FREQUENCY (MHz)
-10
_______________________________________________________________________________________
7
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
Typical Operating Characteristics (continued)
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.)
NOISE FIGURE vs. RF FREQUENCY
MAX2065 toc19
NOISE FIGURE vs. RF FREQUENCY
MAX2065 toc20
OUTPUT P1dB vs. RF FREQUENCY
TC = +85C 20 TC = +25C OUTPUT P1dB (dBm) 19 18 17 16 15 TC = -40C
MAX2065 toc21
11 10 NOISE FIGURE (dB) 9 TC = +25C 8 7 6 5 4 50 250 450 650 850 TC = -40C TC = +85C
11 10 NOISE FIGURE (dB) 9 8 7 6 5 4 VCC = 5.25V VCC = 5.00V VCC = 4.75V
21
1050
50
250
450
650
850
1050
50
250
450
650
850
1050
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
OUTPUT P1dB vs. RF FREQUENCY
MAX2065 toc22
OUTPUT IP3 vs. RF FREQUENCY
MAX2065 toc23
OUTPUT IP3 vs. RF FREQUENCY
POUT = 0dBm/TONE
MAX2065 toc24 MAX2065 toc27
21 20 OUTPUT P1dB (dBm) 19 18 17 VCC = 4.75V 16 VCC = 5.25V
50
POUT = 0dBm/TONE
50
45 OUTPUT IP3 (dBm) OUTPUT IP3 (dBm) VCC = 5.00V TC = +25C 40
45 VCC = 5.00V VCC = 5.25V 40
35
TC = -40C TC = +85C
35
VCC = 4.75V
15 50 250 450 650 850 1050 RF FREQUENCY (MHz)
30 50 250 450 650 850 1050 RF FREQUENCY (MHz)
30 50 250 450 650 850 1050 RF FREQUENCY (MHz)
OUTPUT IP3 vs. DIGITAL ATTENUATOR STATE
MAX2065 toc25
OUTPUT IP3 vs. ANALOG ATTENUATOR STATE
POUT = -3dBm/TONE RF = 200MHz
MAX2065 toc26
2nd HARMONIC vs. RF FREQUENCY
80 TC = -40C 2nd HARMONIC (dBc) 70 POUT = 3dBm
42 TC = +25C LSB, USB 41 OUTPUT IP3 (dBm)
45
POUT = -3dBm/TONE RF = 200MHz
40 OUTPUT IP3 (dBm)
40
TC = +85C LSB, USB
35
60 TC = +25C 50
39 TC = -40C LSB, USB 38 0 4 8 12 16 20 24 28 32 DIGITAL ATTENUATOR STATE (dB)
30 TC = -40C, +25C, +85C TONE = LSB, USB 25 0 32 64 96 128 160 192 224 256 DAC CODE
TC = +85C 40 50 250 450 650 850 1050 RF FREQUENCY (MHz)
8
_______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
Typical Operating Characteristics (continued)
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.)
2nd HARMONIC vs. RF FREQUENCY
MAX2065 toc28
MAX2065
2nd HARMONIC vs. DIGITAL ATTENUATOR STATE
MAX2065 toc29
2nd HARMONIC vs. ANALOG ATTENUATOR STATE
POUT = 0dBm RF = 200MHz
MAX2065 toc30
80 VCC = 5.25V 2nd HARMONIC (dBc) 70
80 TC = -40C 2nd HARMONIC (dBc) 75
POUT = 3dBm
POUT = 0dBm RF = 200MHz
80
2nd HARMONIC (dBc)
VCC = 5.00V
75 TC = +25C 70
60 VCC = 4.75V 50
70 TC = +25C
65
TC = +85C
65 TC = +85C TC = -40C 128 160 192 224 256
40 50 250 450 650 850 1050 RF FREQUENCY (MHz)
60 0 4 8 12 16 20 24 28 32 DIGITAL ATTENUATOR STATE (dB)
60 0 32 64 96 DAC CODE
3rd HARMONIC vs. RF FREQUENCY
MAX2065 toc31
3rd HARMONIC vs. RF FREQUENCY
MAX2065 toc32
3rd HARMONIC vs. DIGITAL ATTENUATOR STATE
TC = +25C TC = +85C POUT = 0dBm RF = 200MHz
MAX2065 toc33
110 TC = +85C TC = +25C 90
POUT = 3dBm
110
100 95 3rd HARMONIC (dBc) 90 85 80 75 70 TC = -40C
POUT = 3dBm VCC = 5.25V VCC = 5.00V
100 3rd HARMONIC (dBc)
100 3rd HARMONIC (dBc)
90
80
80
70
TC = -40C
70
VCC = 4.75V
60 50 250 450 650 850 1050 RF FREQUENCY (MHz)
60 50 250 450 650 850 1050 RF FREQUENCY (MHz)
0
4
8
12
16
20
24
28
32
DIGITAL ATTENUATOR STATE (dB)
3rd HARMONIC vs. ANALOG ATTENUATOR STATE
MAX2065 toc34
OIP2 vs. RF FREQUENCY
POUT = 0dBm/TONE TC = -40C
MAX2065 toc35
OIP2 vs. RF FREQUENCY
POUT = 0dBm/TONE
MAX2065 toc36
100 95 3rd HARMONIC (dBc) 90
POUT = 0dBm RF = 200MHz TC = +25C
75 70 65 OIP2 (dBm)
75 70 65 OIP2 (dBm) 60 55 50 VCC = 4.75V
VCC = 5.00V VCC = 5.25V
85 80 75 70 0 32 64 96 128 160 192 224 256 DAC CODE TC = +85C TC = -40C
60 55 50 45 40 50 250 450 650 850 1050 RF FREQUENCY (MHz) TC = +25C TC = +85C
45 40 50 250 450 650 850 1050 RF FREQUENCY (MHz)
_______________________________________________________________________________________
9
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
Typical Operating Characteristics (continued)
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.)
OIP2 vs. DIGITAL ATTENUATOR STATE
MAX2065 toc37
OIP2 vs. ANALOG ATTENUATOR STATE
POUT = -3dBm/TONE RF = 200MHz TC = +25C
MAX2065 toc38 MAX2065 toc42 MAX2065 toc40
75 70 65 OIP2 (dBm) 60 55 TC = -40C
POUT = -3dBm/TONE RF = 200MHz TC = +25C
75 70 65 OIP2 (dBm) 60 55 50 45 40 TC = -40C
TC = +85C 50 45 40 0 4 8 12 16 20 24 28 32 DIGITAL ATTENUATOR STATE (dB) TC = +85C
0
32
64
96
128 160 192 224 256
DAC CODE
DAC VOLTAGE vs. DAC CODE
MAX2065 toc39
DAC VOLTAGE vs. DAC CODE
3.0 2.5 DAC VOLTAGE (V) 2.0 1.5 1.0 VCC = 4.75V, 5.00V, 5.25V 0.5 0
3.0 2.5 DAC VOLTAGE (V) 2.0 1.5 1.0 TC = -40C, +25C, +85C 0.5 0 0 32 64 96
128 160 192 224 256
0
32
64
96
128 160 192 224 256
DAC CODE
DAC CODE
DAC VOLTAGE DRIFT vs. DAC CODE
0.04 DAC VOLTAGE CHANGE (V) 0.03 0.02 0.01 0 -0.01 -0.02 -0.03 -0.04 -0.05 0 32 64 96 128 160 192 224 256 DAC CODE TC CHANGED FROM +25C TO +85C -0.0075 -0.0100 0 TC CHANGED FROM +25C TO -40C
MAX2065 toc41
DAC VOLTAGE DRIFT vs. DAC CODE
0.0100 0.0075 DAC VOLTAGE CHANGE (V) 0.0050 0.0025 0 -0.0025 -0.0050 VCC CHANGED FROM 5.00V TO 4.75V VCC CHANGED FROM 5.00V TO 5.25V
0.05
32
64
96
128 160 192 224 256
DAC CODE
10
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
Typical Operating Characteristics (continued)
(VCC = +5.0V, attenuator only, maximum gain, PIN = -20dBm and TC = +25C, unless otherwise noted.)
GAIN vs. RF FREQUENCY (DIGITAL ATTENUATOR ONLY)
MAX2065 toc43
MAX2065
GAIN vs. RF FREQUENCY (DIGITAL ATTENUATOR ONLY)
MAXIMUM GAIN SETTING -1 VCC = 5.25V GAIN (dB) -2
MAX2065 toc44 MAX2065 toc46
0 MAXIMUM GAIN SETTING -1 TC = -40C TC = +25C
0
GAIN (dB)
-2
-3
-3 VCC = 5.00V
-4 TC = +85C -5 50 250 450 650 850 1050 RF FREQUENCY (MHz)
-4
VCC = 4.75V
-5 50 250 450 650 850 1050 RF FREQUENCY (MHz)
GAIN vs. RF FREQUENCY (ANALOG ATTENUATOR ONLY)
MAXIMUM GAIN SETTING -1 TC = -40C
MAX2065 toc45
GAIN vs. RF FREQUENCY (ANALOG ATTENUATOR ONLY)
0 MAXIMUM GAIN SETTING -1
0
GAIN (dB)
-3
TC = +85C TC = +25C
GAIN (dB)
-2
-2 VCC = 4.75V, 5.00V, 5.25V
-3
-4
-4
-5 50 250 450 650 850 1050 RF FREQUENCY (MHz)
-5 50 250 450 650 850 1050 RF FREQUENCY (MHz)
______________________________________________________________________________________
11
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
Typical Operating Characteristics (continued)
(VCC = +5.0V, LC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal reference used, unless otherwise noted.)
SUPPLY CURRENT vs. VCC (LOW CURRENT MODE)
MAX2065 toc47
GAIN vs. RF FREQUENCY (LOW CURRENT MODE)
MAX2065 toc48
GAIN vs. RF FREQUENCY (LOW CURRENT MODE)
21 20 GAIN (dB) 19 18 17 VCC = 4.75V, 5.00V, 5.25V
MAX2065 toc49
85 TC = +25C SUPPLY CURRENT (mA) 75 TC = -40C
22 21 20 GAIN (dB) 19 18 17 TC = +25C TC = -40C
22
65 TC = +85C
16 15
TC = +85C
16 15 14
55 4.750
14 4.857 5.000 VCC (V) 5.125 5.250 50 250 450 650 850 1050 RF FREQUENCY (MHz)
50
250
450
650
850
1050
RF FREQUENCY (MHz)
INPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc50
OUTPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc51
INPUT MATCH vs. ANALOG ATTENUATOR SETTING (LOW CURRENT MODE)
MAX2065 toc52
0 -5 INPUT MATCH (dB) -10 -15 -20 -25 4dB -30 50 250 450 650 850 31dB 16dB 1dB, 2dB 0dB, 8dB
0 -5 OUTPUT MATCH (dB) -10 -15 -20 -25 -30 16dB, 31dB
0 -5 INPUT MATCH (dB) -10 -15 -20 -25 -30
0dB, 1dB, 2dB, 4dB 8dB
50MHz 1000MHz 200MHz 450MHz
1050
50
250
450
650
850
1050
0
32
64
96
128 160 192 224 256
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
DAC CODE
OUTPUT MATCH vs. ANALOG ATTENUATOR SETTING (LOW CURRENT MODE)
MAX2065 toc53
NOISE FIGURE vs. RF FREQUENCY (LOW CURRENT MODE)
TC = +85C TC = +25C
MAX2065 toc54
NOISE FIGURE vs. RF FREQUENCY (LOW CURRENT MODE)
MAX2065 toc55
0 -5 OUTPUT MATCH (dB) -10 -15 -20 -25 50MHz -30 0 32 64 96 200MHz 450MHz 1000MHz
11 10 NOISE FIGURE (dB) 9 8 7 6 5 4 TC = -40C 50 250 450 650 850
11 10 VCC = 4.75V, 5.00V, 5.25V NOISE FIGURE (dB) 9 8 7 6 5 4
128 160 192 224 256
1050
50
250
450
650
850
1050
DAC CODE
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
12
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
Typical Operating Characteristics (continued)
(VCC = +5.0V, LC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal reference used, unless otherwise noted.)
OUTPUT P1dB vs. RF FREQUENCY (LOW CURRENT MODE)
MAX2065 toc56
MAX2065
OUTPUT P1dB vs. RF FREQUENCY (LOW CURRENT MODE)
MAX2065 toc57
OUTPUT IP3 vs. RF FREQUENCY (LOW CURRENT MODE)
MAX2065 toc58
18 TC = -40C 17 OUTPUT P1dB (dBm) TC = +25C
18 VCC = 5.25V VCC = 5.00V VCC = 4.75V 16
45 TC = +25C 40 OUTPUT IP3 (dBm) TC = -40C
17 OUTPUT P1dB (dBm)
16
35
15
15
14 TC = +85C 13 50 250 450 650 850 1050 RF FREQUENCY (MHz)
14
30
TC = +85C
13 50 250 450 650 850 1050 RF FREQUENCY (MHz)
25 50 250 450 650 850 1050 RF FREQUENCY (MHz)
OUTPUT IP3 vs. RF FREQUENCY (LOW CURRENT MODE)
MAX2065 toc59
OUTPUT IP3 vs. DIGITAL ATTENUATOR STATE (LOW CURRENT MODE)
MAX2065 toc60
OUTPUT IP3 vs. ANALOG ATTENUATOR STATE (LOW CURRENT MODE)
POUT = -3dBm/TONE RF = 200MHz
MAX2065 toc61
45 VCC = 5.00V 40 OUTPUT IP3 (dBm) VCC = 5.25V
45 TC = +25C LSB, USB 40 OUTPUT IP3 (dBm)
POUT = -3dBm/TONE RF = 200MHz
45
40 OUTPUT IP3 (dBm)
35
35
TC = +85C LSB, USB TC = -40C LSB, USB
35
30
VCC = 4.75V
30
30 TC = -40C, +25C, +85C TONE = LSB, USB
25 50 250 450 650 850 1050 RF FREQUENCY (MHz)
25 0 4 8 12 16 20 24 28 32 DIGITAL ATTENUATOR STATE (dB)
25 0 32 64 98 128 160 192 224 256 DAC CODE
2nd HARMONIC vs. RF FREQUENCY (LOW CURRENT MODE)
MAX2065 toc62
2nd HARMONIC vs. RF FREQUENCY (LOW CURRENT MODE)
MAX2065 toc63
2nd HARMONIC vs. DIGITAL ATTENUATOR STATE (LOW CURRENT MODE)
POUT = 0dBm RF = 200MHz 2nd HARMONIC (dBc) 75 TC = -40C
MAX2065 toc64
80 POUT = 3dBm 70
80 VCC = 5.00V 70 POUT = 3dBm VCC = 5.25V
80
2nd HARMONIC (dBc)
2nd HARMONIC (dBc)
TC = -40C
60
60 VCC = 4.75V 50
70 TC = +85C 65 TC = +25C
50
TC = +25C TC = +85C
40 50 250 450 650 850 1050 RF FREQUENCY (MHz)
40 50 250 450 650 850 1050 RF FREQUENCY (MHz)
60 0 4 8 12 16 20 24 28 32 DIGITAL ATTENUATOR STATE (dB)
______________________________________________________________________________________
13
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
Typical Operating Characteristics (continued)
(VCC = +5.0V, LC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal reference used, unless otherwise noted.)
2nd HARMONIC vs. ANALOG ATTENUATOR STATE (LOW CURRENT MODE)
MAX2065 toc65
3rd HARMONIC vs. RF FREQUENCY (LOW CURRENT MODE)
MAX2065 toc66
3rd HARMONIC vs. RF FREQUENCY (LOW CURRENT MODE)
POUT = 3dBm 100 3rd HARMONIC (dBc) VCC = 5.25V 90 VCC = 5.00V
MAX2065 toc67
80 POUT = 0dBm RF = 200MHz 2nd HARMONIC (dBc) 75 TC = -40C TC = +25C 70
110 POUT = 3dBm 100 3rd HARMONIC (dBc)
110
90
TC = +25C
80
80
65 TC = +85C 60 0 32 64 96 128 160 192 224 256 DAC CODE
70
TC = -40C TC = +85C
70 VCC = 4.75V 60
60 50 250 450 650 850 1050 RF FREQUENCY (MHz)
50
250
450
650
850
1050
RF FREQUENCY (MHz)
3rd HARMONIC vs. DIGITAL ATTENUATOR STATE (LOW CURRENT MODE)
MAX2065 toc68
3rd HARMONIC vs. ANALOG ATTENUATOR STATE (LOW CURRENT MODE)
MAX2065 toc69
OIP2 vs. RF FREQUENCY (LOW CURRENT MODE)
POUT = 0dBm/TONE 70 65 OIP2 (dBm) TC = -40C 60 55 50 TC = +25C
MAX2065 toc70
100 95 3rd HARMONIC (dBc) 90 85 80 75 70 0 4 8 12 16 20 24 28 TC = -40C POUT = 0dBm RF = 200MHz TC = +25C TC = +85C
100 95 3rd HARMONIC (dBc) 90 85 80 75 TC = -40C 70 TC = +85C POUT = 0dBm RF = 200MHz TC = +25C
75
45 40
TC = +85C 50 250 450 650 850 1050
32
0
32
64
96
128
160 192 224 256
DIGITAL ATTENUATOR STATE (dB)
DAC CODE
RF FREQUENCY (MHz)
OIP2 vs. RF FREQUENCY (LOW CURRENT MODE)
MAX2065 toc71
OIP2 vs. DIGITAL ATTENUATOR STATE (LOW CURRENT MODE)
MAX2065 toc72
OIP2 vs. ANALOG ATTENUATOR STATE (LOW CURRENT MODE)
POUT = -3dBm/TONE RF = 200MHz
MAX2065 toc73
75 70 65 OIP2 (dBm) 60 55 50 45 40 50 250 450 650 850 VCC = 4.75V VCC = 5.00V POUT = 0dBm/TONE
75 70 65 OIP2 (dBm) 60 55 TC = +85C 50 45 40 TC = -40C TC = +25C POUT = -3dBm/TONE RF = 200MHz
75 70 65 OIP2 (dBm) 60 55 50 45 40 TC = +85C TC = -40C
VCC = 5.25V
TC = +25C
1050
0
4
8
12
16
20
24
28
32
0
32
64
96
128 160 192 224
256
RF FREQUENCY (MHz)
DIGITAL ATTENUATOR STATE (dB)
DAC CODE
14
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
Typical Operating Characteristics (continued)
(VCC = +3.3V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.)
SUPPLY CURRENT vs. VCC
MAX2065 toc74
MAX2065
GAIN vs. RF FREQUENCY
MAX2065 toc75
GAIN vs. RF FREQUENCY
20 19
MAX2065 toc76
75 TC = -40C SUPPLY CURRENT (mA)
21 VCC = 3.3V 20 19 TC = -40C TC = +25C GAIN (dB) 17 16 15 TC = +85C
21 VCC = 3.6V VCC = 3.0V
65
GAIN (dB)
18
18 17 16 15 14 13 VCC = 3.3V
55 TC = +25C
TC = +85C 45 3.00 3.15
14 13 3.60 50 250 450 650 850 1050
3.30 VCC (V)
3.45
50
250
450
650
850
1050
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc77
OUTPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc78
INPUT MATCH vs. ANALOG ATTENUATOR SETTING
VCC = 3.3V -5 INPUT MATCH (dB) -10 -15 -20 -25 -30
MAX2065 toc79
0 VCC = 3.3V -5 INPUT MATCH (dB) -10 -15 -20 -25 4dB -30 50 250 450 650 850 31dB 0dB, 8dB 16dB 1dB, 2dB
0 VCC = 3.3V -5 OUTPUT MATCH (dB) -10 -15 -20 8dB -25 -30 16dB, 31dB 0dB, 1dB, 2dB, 4dB
0
1000MHz 50MHz 200MHz 450MHz
1050
0
200
400
600
800
1000
0
32
64
96
128 160 192
224 256
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
DAC CODE
OUTPUT MATCH vs. ANALOG ATTENUATOR SETTING
MAX2065 toc80
NOISE FIGURE vs. RF FREQUENCY
MAX2065 toc81
NOISE FIGURE vs. RF FREQUENCY
MAX2065 toc82
0 VCC = 3.3V -5 OUTPUT MATCH (dB) 450MHz -10 -15 -20 -25 -30 0 32 64 96 128 160 192 50MHz 200MHz 1000MHz
11 VCC = 3.3V 10 NOISE FIGURE (dB) 9 8 7 6 5 4 TC = -40C 50 250 450 650 850 TC = +25C TC = +85C
11 10 NOISE FIGURE (dB) 9 8 7 6 5 4 VCC = 3.6V VCC = 3.0V VCC = 3.3V
224 256
1050
50
250
450
650
850
DAC CODE
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
______________________________________________________________________________________
15
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
Typical Operating Characteristics (continued)
(VCC = +3.3V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.)
OUTPUT P1dB vs. RF FREQUENCY
MAX2065 toc83
OUTPUT P1dB vs. RF FREQUENCY
MAX2065 toc84
OUTPUT IP3 vs. RF FREQUENCY
VCC = 3.3V 45 OUTPUT IP3 (dBm) 40 35 30 25 TC = +85C 20
MAX2065 toc85
17 VCC = 3.3V 16 OUTPUT P1dB (dBm) 15 14 13 12 11 10 9 50 250 450 650 850 TC = +85C TC = -40C TC = +25C
17 16 OUTPUT P1dB (dBm) 15 14 13 12 11 10 9 VCC = 3.0V VCC = 3.3V VCC = 3.6V
50
TC = +25C TC = -40C
1050
50
250
450
650
850
1050
50
250
450
650
850
1050
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
OUTPUT IP3 vs. RF FREQUENCY
MAX2065 toc86
OUTPUT IP3 vs. DIGITAL ATTENUATOR STATE
MAX2065 toc87
OUTPUT IP3 vs. ANALOG ATTENUATOR STATE
VCC = 3.3V 40 OUTPUT IP3 (dBm) POUT = -3dBm/TONE RF = 200MHz
MAX2065 toc88 MAX2065 toc91
50 45 VCC = 3.3V OUTPUT IP3 (dBm) 40 35 30 25 VCC = 3.0V 20 50 250 450 650 850 VCC = 3.6V
39 VCC = 3.3V 38 OUTPUT IP3 (dBm) POUT = -3dBm/TONE RF = 200MHz
45
37
35
36 35
30 TC = -40C, +25C, +85C TONE = LSB, USB 25 0 4 8 12 16 20 24 28 32 0 32 64 96 128 160 192 224 256 DIGITAL ATTENUATOR STATE (dB) DAC CODE TC = -40C, +25C, +85C TONE = LSB, USB
34 1050 RF FREQUENCY (MHz)
2nd HARMONIC vs. RF FREQUENCY
MAX2065 toc89
2nd HARMONIC vs. RF FREQUENCY
MAX2065 toc90
2nd HARMONIC vs. DIGITAL ATTENUATOR STATE
70 TC = +85C 2nd HARMONIC (dBc) 65 POUT = 0dBm RF = 200MHz VCC = 3.3V
80 TC = +25C POUT = 3dBm VCC = 3.3V
80 POUT = 3dBm 70 2nd HARMONIC (dBc) VCC = 3.3V VCC = 3.6V 60
70 2nd HARMONIC (dBc)
60
TC = +85C
60
50
50
55 40 TC = -40C 40 VCC = 3.0V 30 50 250 450 650 850 1050 RF FREQUENCY (MHz) 30 50 250 450 650 850 1050 RF FREQUENCY (MHz) 50 0 4 8 12 16 TC = -40C
TC = +25C
20
24
28
32
DIGITAL ATTENUATOR STATE (dB)
16
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
Typical Operating Characteristics (continued)
(VCC = +3.3V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.)
2nd HARMONIC vs. ANALOG ATTENUATOR STATE
MAX2065 toc92
MAX2065
3rd HARMONIC vs. RF FREQUENCY
MAX2065 toc93
3rd HARMONIC vs. RF FREQUENCY
POUT = 3dBm 100 3rd HARMONIC (dBc) VCC = 3.3V 90 80 70 60 VCC = 3.0V 50 VCC = 3.6V
MAX2065 toc94
80 TC = +25C POUT = 0dBm RF = 200MHz VCC = 3.3V
110 100 3rd HARMONIC (dBc) TC = +25C 90 80 70 60 50 TC = +85C POUT = 3dBm VCC = 3.3V
110
70 2nd HARMONIC (dBc)
60
50 TC = -40C 40 TC = +85C
TC = -40C
30 0 32 64 96 128 160 192 224 256 DAC CODE
50
250
450
650
850
1050
50
250
450
650
850
1050
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
3rd HARMONIC vs. DIGITAL ATTENUATOR STATE
MAX2065 toc95
3rd HARMONIC vs. ANALOG ATTENUATOR STATE
MAX2065 toc96
OIP2 vs. RF FREQUENCY
POUT = 0dBm/TONE VCC = 3.3V 60 OIP2 (dBm) TC = +25C TC = +85C 50
MAX2065 toc97
90 POUT = 0dBm RF = 200MHz VCC = 3.3V
110 100 3rd HARMONIC (dBc) 90 80 70 TC = +25C POUT = 0dBm RF = 200MHz VCC = 3.3V
70
3rd HARMONIC (dBc)
85
TC = +25C, +85C
80
75
TC = -40C
40 60 50 TC = -40C TC = +85C 30 0 32 64 96 128 160 192 224 256 50 250 450 650 850 1050 DAC CODE RF FREQUENCY (MHz) TC = -40C
70 0 4 8 12 16 20 24 28 32 DIGITAL ATTENUATOR STATE (dB)
OIP2 vs. RF FREQUENCY
MAX2065 toc98
OIP2 vs. DIGITAL ATTENUATOR STATE
POUT = 0dBm/TONE RF = 200MHz TC = +85C VCC = 3.3V
MAX2065 toc99
OIP2 vs. ANALOG ATTENUATOR STATE
POUT = -3dBm/TONE RF = 200MHz VCC = 3.3V
MAX2065 toc100
70 POUT = 0dBm/TONE 60 OIP2 (dBm)
70
70
VCC = 3.3V
60 VCC = 3.6V OIP2 (dBm) 50
60 OIP2 (dBm)
TC = +85C
50
50 TC = +25C
40
40 VCC = 3.0V
TC = +25C TC = -40C
40
TC = -40C
30 50 250 450 650 850 1050 RF FREQUENCY (MHz)
30 0 4 8 12 16 20 24 28 32 DIGITAL ATTENUATOR STATE (dB)
30 0 32 64 96 128 160 192 224 256 DAC CODE
______________________________________________________________________________________
17
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
Pin Description
PIN 1, 16, 19, 22, 24-28, 30, 31, 33-36 2 3 4 5 6 7 8 9 NAME GND Ground DAC Reference Voltage Selection Logic Input. Logic 1 = internal DAC reference voltage, Logic 0 = external DAC reference voltage. Logic input disabled (don't care) when VDAC_EN = Logic 0. DAC Enable/Disable Logic Input. Logic 0 = disable DAC circuit, Logic 1 = enable DAC circuit. SPI Data Digital Input SPI Clock Digital Input SPI Chip-Select Digital Input Digital Logic Supply Input Digital Attenuator SPI or Parallel Control Selection Logic Input. Logic 0 = parallel control, Logic 1 = serial control. Digital Attenuator Preprogrammed Attenuation State Logic Input State A Logic = 0 10 STATE_B Logic = 1 Logic = 0 Logic = 1 11 12 13 14 15 17 18 20 21 23 29 32 37 38 39 40 -- D4 D3 D2 D1 D0 AMP_OUT RSET AMP_IN VCC_AMP ATTEN2_OUT ATTEN2_IN ATTEN1_OUT ATTEN1_IN VCC_ANALOG VREF_IN EP State B Logic = 0 Logic = 0 Logic = 1 Logic = 1 Digital Attenuator Preprogrammed State 1 Preprogrammed State 2 Preprogrammed State 3 Preprogrammed State 4 DESCRIPTION
VREF_SELECT VDAC_EN DATA CLK CS VDD_LOGIC SER/PAR STATE_A
16dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable. 8dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable. 4dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable. 2dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable. 1dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable. Driver Amplifier Output (50) Driver Amplifier Bias-Setting. See the External Bias section. Driver Amplifier Input (50) Driver Amplifier Supply Voltage Input 5-Bit Digital Attenuator Output (50) 5-Bit Digital Attenuator Input (50) Analog Attenuator Output (50) Analog Attenuator Input (50) Analog Bias and Control Supply Voltage Input External DAC Voltage Reference Input Exposed Pad. Internally connected to GND. Connect EP to GND for proper RF performance and enhanced thermal dissipation.
ANALOG_VCTRL Analog Attenuator Voltage Control Input
18
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
Detailed Description
The MAX2065 high-linearity analog/digital variable-gain amplifier is a general-purpose, high-performance amplifier designed to interface with 50 systems operating in the 50MHz to 1000MHz frequency range. The MAX2065 integrates one digital attenuator and one analog attenuator to provide 62dB of total gain control, as well as a driver amplifier optimized to provide high gain, high IP3, low noise figure, and low power consumption. For applications that do not require high linearity, the bias current of the amplifier can be adjusted by an external resistor to further reduce power consumption. The digital attenuator is controlled as a slave peripheral using either the SPI-compatible interface or a parallel bus with 31dB total adjustment range in 1dB steps. An added feature allows "rapid-fire" gain selection between each of the four unique steps (preprogrammed by the user through the SPI-compatible interface). The 2-pin control allows the user to quickly access any one of four customized attenuation states without reprogramming the SPI bus. The analog attenuator is controlled using an external voltage or through the SPI-compatible interface using an on-chip DAC. Because each of the three stages has its own external RF input and RF output, this component can be configured to either optimize NF (amplifier configured first), OIP3 (amplifier last), or a compromise of NF and OIP3. The device's performance features include 22dB standalone amplifier gain (amplifier only), 6.5dB NF at maximum gain (includes attenuator insertion loss for both attenuators), and a high OIP3 level of +42dBm. Each of these features makes the MAX2065 an ideal VGA for numerous receiver and transmitter applications. In addition, the MAX2065 operates from a single +5V supply, or a single +3.3V supply with slightly reduced performance, and has adjustable bias to trade current consumption for linearity performance.
MAX2065
Analog and 5-Bit Digital Attenuator Control
The MAX2065 integrates one analog attenuator and one 5-bit digital attenuator to achieve a high level of dynamic range. The analog attenuator has a 31dB range and is controlled using an external voltage or through the 3-wire serial peripheral interface (SPI) using an on-chip 8-bit DAC. The digital attenuator has a 31dB control range, a 1dB step size, and is programmed through the 3-wire SPI. See the Applications Information section and Table 1 for attenuator programming details. The attenuators can be used for both static and dynamic power control.
Driver Amplifier
The MAX2065 includes a high-performance driver with a fixed gain of 22dB. The driver amplifier circuit is optimized for high linearity for the 50MHz to 1000MHz frequency range.
Applications Information
SPI Interface and Attenuator Settings
The digital attenuator is programmed through the 3-wire SPI/MICROWIRETM-compatible serial interface using 5-bit words. Twenty-eight bits of data are shifted in MSB first and is framed by CS. When CS is low, the clock is active and data is shifted on the rising edge of the clock. When CS transitions high, the data is latched and the attenuator setting changes (Figure 1). See Table 2 for details on the SPI data format.
Table 1. Control Logic
VDAC_EN 0 1 0 SER/PAR 0 0 1 VREF_SELECT X 1 X ANALOG ATTENUATOR Controlled by external control voltage Controlled by on-chip DAC Controlled by external control voltage Controlled by on-chip DAC DIGITAL ATTENUATOR Parallel controlled Parallel controlled SPI controlled D/A CONVERTER Disabled Enabled (DAC uses onchip voltage reference) Disabled Enabled (DAC uses external voltage reference)
1
1
0
SPI controlled
X = Don't care. MICROWIRE is a trademark of National Semiconductor Corp.
______________________________________________________________________________________ 19
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
MSB LSB
DATA
DN
D(N-1)
D1
D0
CLOCK
tCW tCS CS tCH
tES tEWS tEW
Figure 1. MAX2065 SPI Timing Diagram
Table 2. SPI Data Format
FUNCTION BIT D27 (MSB) D26 Digital Attenuator State 4 D25 D24 D23 D22 D21 Digital Attenuator State 3 D20 D19 D18 D17 D16 Digital Attenuator State 2 D15 D14 D13 D12 D11 Digital Attenuator State 1 D10 D9 D8 5-bit word used to program the digital attenuator state 1 (see the description for digital attenuator state 4) 5-bit word used to program the digital attenuator state 2 (see the description for digital attenuator state 4) 5-bit word used to program the digital attenuator state 3 (see the description for digital attenuator state 4) 8dB step 4dB step 2dB step 1dB step (LSB) DESCRIPTION 16dB step (MSB of the 5-bit word used to program the digital attenuator state 4)
20
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
Table 2. SPI Data Format (continued)
FUNCTION BIT D7 D6 D5 On-Chip DAC D4 D3 D2 D1 D0 (LSB) Bit 6 of DAC Bit 5 of DAC Bit 4 of DAC Bit 3 of DAC Bit 2 of DAC Bit 1 of DAC Bit 0 (LSB) of the on-chip DAC DESCRIPTION Bit 7 (MSB) of on-chip DAC used to program the analog attenuator
Attenuator and DAC Operation
The analog attenuator is controlled by an external control voltage applied at ANALOG_VCTRL (pin 39) or by the on-chip 8-bit DAC, while the digital attenuator is controlled through the SPI-compatible interface or parallel bus. The DAC enable/disable logic-input pin (VDAC_EN), digital attenuator SPI or parallel control selection logic-input pin (SER/PAR), and the DAC reference voltage selection logic-input pin (VREF_SELECT) determine how the attenuators are controlled. The onchip DAC can also be enabled or disabled. When the DAC is enabled, either the on-chip voltage reference or the external voltage reference can be selected. See Table 1 for the attenuator and DAC operation truth table.
interface. One of the limitations of any SPI bus is the speed at which commands can be clocked into each peripheral device. By offering direct access to the 5-bit parallel interface, the user can quickly shift between digital attenuator states needed for critical "fast-attack" automatic gain control (AGC) applications.
"Rapid-Fire" Preprogrammed Attenuation States
The MAX2065 has an added feature that provides "rapid fire" gain selection between four preprogrammed attenuation steps. As with the supplemental 5-bit bus mentioned above, this "rapid fire" gain selection allows the user to quickly access any one of four customized digital attenuation states without incurring the delays associated with reprogramming the device through the SPI bus. The switching speed is comparable to that achieved using the supplemental 5-bit parallel bus. However, by employing this specific feature, the digital attenuator I/O is further reduced by a factor of either 5 or 2.5 (5 control bits vs. 1 or 2, respectively) depending on the number of states desired.
Digital Attenuator Settings Using the Parallel Control Bus
To capitalize on its fast 25ns switching capability, the MAX2065 offers a supplemental 5-bit parallel control interface. The digital logic attenuator-control pins (D0-D4) enable the attenuator stages (Table 3). Direct access to this 5-bit bus enables the user to avoid any programming delays associated with the SPI
Table 3. Digital Attenuator Settings (Parallel Control)
INPUT D0 D1 D2 D3 D4 LOGIC = 0 (OR GROUND) Disable 1dB attenuator, or when SPI is default programmer Disable 2dB attenuator, or when SPI is default programmer Disable 4dB attenuator, or when SPI is default programmer Disable 8dB attenuator, or when SPI is default programmer Disable 16dB attenuator, or when SPI is default programmer LOGIC = 1 Enable 1dB attenuator Enable 2dB attenuator Enable 4dB attenuator Enable 8dB attenuator Enable 16dB attenuator
______________________________________________________________________________________
21
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
The user can employ the STATE_A and STATE_B logicinput pins to apply each step as required (Table 4). Toggling just the STATE_A pin (one control bit) yields two preprogrammed attenuation states; toggling both the STATE_A and STATE_B pins together (two control bits) yield four preprogrammed attenuation states. As an example, assume that the AGC application requires a static attenuation adjustment to trim out gain inconsistencies within a receiver lineup. The same AGC circuit can also be called upon to dynamically attenuate an unwanted blocker signal that could de-sense the receiver and lead to an ADC overdrive condition. In this example, the MAX2065 would be preprogrammed (through the SPI bus) with two customized attenuation states--one to address the static gain trim adjustment, the second to counter the unwanted blocker condition. Toggling just the STATE_A control bit enables the user to switch quickly between the static and dynamic attenuation settings with only one I/O pin. If desired, the user can also program two additional attenuation states by using the STATE_B control bit as a second I/O pin. These two additional attenuation settings are useful for software-defined radio applications where multiple static gain settings may be needed to account for different frequencies of operation, or where multiple dynamic attenuation settings are needed to account for different blocker levels (as defined by multiple wireless standards).
MAX2065
Cascaded OIP3 Considerations
Due to both attenuator's finite IP3 performance, the cascaded OIP3 degrades when both attenuators are set at higher attenuation states.
Table 4. Preprogrammed Attenuation State Settings
STATE_A 0 1 0 1 STATE_B 0 0 1 1 DIGITAL ATTENUATOR Preprogrammed attenuation state 1 Preprogrammed attenuation state 2 Preprogrammed attenuation state 3 Preprogrammed attenuation state 4
External Bias
Bias currents for the driver amplifier are set and optimized through external resistors. Resistors R1 and R1A connected to RSET (pin 18) set the bias current for the amplifier. The external biasing resistor values can be increased for reduced current operation at the expense of performance.
Table 5. Typical Application Circuit Component Values (HC Mode)
DESIGNATION C1, C2, C7, C11 C3, C4, C6, C8, C9, C10 C12, C13 L1 R1, R1A R2 (+3.3V applications only) R3 (+3.3V applications only) R4 (+5V applications and using internal DAC only) U1 VALUE 10nF 1000pF 150pF 470nH 10 1k 2k 47k -- SIZE 0402 0402 0402 1008 0402 0402 0402 0402 40-pin thin QFN-EP (6mm x 6mm) VENDOR Murata Mfg. Co., Ltd. Murata Mfg. Co., Ltd. Murata Mfg. Co., Ltd. Coilcraft, Inc. Panasonic Corp. Panasonic Corp. Panasonic Corp. Panasonic Corp. Maxim Integrated Products, Inc. DESCRIPTION X7R C0G ceramic capacitor C0G ceramic capacitor 1008CS-471XJLC 1% 1% 1% 1% MAX2065ETL+
22
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
Table 6. Typical Application Circuit Component Values (LC Mode)
DESIGNATION C1, C2, C7, C11 C3, C4, C6, C8, C9, C10 C12, C13 L1 R1 R1A R2 (+3.3V applications only) R3 (+3.3V applications only) R4 (+5V applications and using internal DAC only) U1 VALUE 10nF 1000pF 150pF 470nH 24 0.01F 1k 2k 47k -- SIZE 0402 0402 0402 1008 0402 0402 0402 0402 0402 40-pin thin QFN-EP (6mm x 6mm) VENDOR Murata Mfg. Co., Ltd. Murata Mfg. Co., Ltd. Murata Mfg. Co., Ltd. Coilcraft, Inc. Vishay Murata Mfg. Co., Ltd. Panasonic Corp. Panasonic Corp. Panasonic Corp. Maxim Integrated Products, Inc. DESCRIPTION X7R C0G ceramic capacitor C0G ceramic capacitor 1008CS-471XJLC 1% X7R 1% 1% 1% MAX2065ETL+
+5V and +3.3V Supply Voltage
The MAX2065 features an optional +3.3V supply voltage operation with slightly reduced linearity performance.
26 GND
Layout Considerations
The pin configuration of the MAX2065 has been optimized to facilitate a very compact physical layout of the device and its associated discrete components. The exposed paddle (EP) of the MAX2065's 40-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX2065 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP must be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.
25
GND L C
24
GND C8
23
ATTEN2_OUT
22
GND VCC
21
VCC_AMP
Amplitude Overshoot Reduction
To reduce amplitude overshoot during digital attenuator state change, connect a bandpass filter (parallel LC type) from ATTEN2_OUT (pin 23) to ground. L = 18nH and C = 47pF are recommended for 169MHz operation (Figure 2). Contact the factory for recommended components for other operating frequencies.
C6 C7
Figure 2. Bandpass Filter to Reduce Amplitude Overshoot
______________________________________________________________________________________
23
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
Typical Application Circuit
VCC
C11 C12 R4 C10 ANALOG_VCTRL ATTEN1_OUT 32 ATTEN1_IN VREF_IN VREF_IN C13 VCC_ANALOG RF INPUT
GND
GND
+ GND VREF_SELECT VDAC_EN DATA CLK CS VDD VDD_LOGIC C1 SER/PAR STATE_A STATE_B 1 2 3 4 5
40
39
38
GND
37
36
35
34
GND
33
GND 31 30 29 28 GND ATTEN2_IN GND GND GND GND GND ATTEN2_OUT GND VCC_AMP VCC C8 C9 DIGITAL ATTENUATOR 27 26 25 24 23 22 21 20 AMP_IN C6 R2 C7
ANALOG ATTENUATOR
VREF
DAC SPI INTERFACE 6 7 8 9 10 11 D4 12 D3 13 D2 14 D1 15 D0 16 GND 17 AMP_OUT 18 RSET 19 GND R1
EP
DRIVER AMP
VCC
R3 L1 C2 C3 C4 RF OUTPUT R1A
24
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
Pin Configuration/Functional Block Diagram
TOP VIEW VREF_IN ANALOG_VCTRL
MAX2065
VCC_ANALOG
ATTEN1_IN
ATTEN1_OUT 32
GND
GND
+ GND 1 VREF_SELECT 2 VDAC_EN 3 DATA 4 CLK 5
40
39
38
GND
37
36
35
34
33
GND
31 30 GND 29 ATTEN2_IN 28 GND
ANALOG ATTENUATOR
GND DIGITAL ATTENUATOR 27 GND 26 GND 25 GND 24 GND 23 ATTEN2_OUT 22 GND 21 VCC_AMP 20 AMP_IN
VREF
DAC SPI INTERFACE CS 6 VDD_LOGIC 7 SER/PAR 8 STATE_A 9 STATE_B 10 11 D4 12 D3 13 D2 14 D1 15 D0 16 GND 17 AMP_OUT 18 RSET 19 GND
DRIVER AMP
TQFN EXPOSED PADDLE ON BOTTOM. CONNECT EP TO GND.
Chip Information
PROCESS: SiGe BiCMOS
______________________________________________________________________________________
25
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
26
______________________________________________________________________________________
QFN THIN.EPS
50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
MAX2065
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 27
(c) 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.


▲Up To Search▲   

 
Price & Availability of MAX2065

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X